
ISSN: XXX-XXXX RESEARCH ARTICLE

PARALLEL COMPUTING OF BIG DATA USING MAPREDUCE
Asst.Prof . Swetha, G1 and Asst.Prof. Radhika, V2Department of Computer Science & Engineering, Teegala Krishna Reddy Engineering CollegeHyderabad, T.S-500 097, India

A R T I C L E I N F O A B S T R A C T
Article History:
Received 18th October, 2016
Received in revised form 19th
November, 2016
Accepted 24th December, 2016
Published online 28th January, 2017

Big data is a term for data sets that are so large or complex that traditional data processing applications
are inadequate. Extracting useful information from dataset measuring in gigabytes and tetra bytes is a
real challenge for data miners. In this paper we discuss and analyze opportunities and challenges for
efficient parallel data processing. Big Data is the next frontier for innovation, competition, and
productivity, and many solutions continue to appear, partly supported by the considerable enthusiasm
around the Map Reduce paradigm for large-scale data analysis. Map Reduce is a programming model
and an associated implementation for processing and generating large data sets with a parallel,
distributed algorithm on a cluster. We review various parallel and distributed programming paradigms,
analyzing how they fit into the Big Data era, and present modern emerging paradigms and
frameworks. With “Big Data” now becoming a reality, more programmers are interested in building
programs on the parallel model — and they often find SQL an unfamiliar and restrictive way to
wrangle data and write code. The biggest game-changer to come along is Map Reduce, the parallel
programming framework that has gained prominence thanks to its use at web search companies.

Keywords:

Introduction, Lambda Architecture,
Parallel Computing, MapReduce

INTRODUCTION
Big data can be stored, acquired, processed, and analyzed in
many ways. Every big data source has different characteristics,
including the frequency, volume, velocity, type, and veracity of
the data. When big data is processed and stored, additional
dimensions come into play, such as governance, security, and
policies. Choosing an architecture and building an appropriate
big data solution is challenging because so many factors have to
be considered. This "Big data architecture and patterns" series
presents a structured and pattern-based approach to simplify the
task of defining an overall big data architecture. Because it is
important to assess whether a business scenario is a big data
problem, we include pointers to help determine which business
problems are good candidates for big data solutions.

Big Data=Transactions+Ineractions+Observations

Big data is more real-time in nature than traditional DW
applications. Traditional DW architectures (e.g. Exadata,
Teradata) are not well-suited for big data apps. Shared nothing,
massively parallel processing, scale out architectures are well-
suited for big data apps.

Lambda architecture

The rise of lambda architecture is correlated with the growth
of big data, real-time analytics, and the drive to mitigate the
latencies of map-reduce.[1]Lambda architecture depends on a
data model with an append-only, immutable data source that
serves as a system of record.[2] It is intended for ingesting and
processing time stamped events that are appended to existing
events rather than overwriting them. State is determined from
the natural time-based ordering of the data. Lambda
architecture describes a system consisting of three layers:
batch processing, speed (or real-time) processing, and a
serving layer for responding to queries.[3].The processing
layers ingest from an immutable master copy of the entire
data set.

Batch layer

The batch layer precomputes results using a distributed
processing system that can handle very large quantities of

Copyright © 2017 Swetha, G and Radhika, V., This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Corresponding author: Swetha, G
Department of Computer Science & Engineering, Teegala Krishna
Reddy Engineering College Hyderabad, T.S-500 097, India

Fig-1

Fig-2

International Journal of
Research and Current Development

Available Online at http://www.journalijrcd.com
vol. 2, Issue, 1, pp.23-25, January, 2017

IJRCD

ISSN: XXX-XXXX RESEARCH ARTICLE

PARALLEL COMPUTING OF BIG DATA USING MAPREDUCE
Asst.Prof . Swetha, G1 and Asst.Prof. Radhika, V2Department of Computer Science & Engineering, Teegala Krishna Reddy Engineering CollegeHyderabad, T.S-500 097, India

A R T I C L E I N F O A B S T R A C T
Article History:
Received 18th October, 2016
Received in revised form 19th
November, 2016
Accepted 24th December, 2016
Published online 28th January, 2017

Big data is a term for data sets that are so large or complex that traditional data processing applications
are inadequate. Extracting useful information from dataset measuring in gigabytes and tetra bytes is a
real challenge for data miners. In this paper we discuss and analyze opportunities and challenges for
efficient parallel data processing. Big Data is the next frontier for innovation, competition, and
productivity, and many solutions continue to appear, partly supported by the considerable enthusiasm
around the Map Reduce paradigm for large-scale data analysis. Map Reduce is a programming model
and an associated implementation for processing and generating large data sets with a parallel,
distributed algorithm on a cluster. We review various parallel and distributed programming paradigms,
analyzing how they fit into the Big Data era, and present modern emerging paradigms and
frameworks. With “Big Data” now becoming a reality, more programmers are interested in building
programs on the parallel model — and they often find SQL an unfamiliar and restrictive way to
wrangle data and write code. The biggest game-changer to come along is Map Reduce, the parallel
programming framework that has gained prominence thanks to its use at web search companies.

Keywords:

Introduction, Lambda Architecture,
Parallel Computing, MapReduce

INTRODUCTION
Big data can be stored, acquired, processed, and analyzed in
many ways. Every big data source has different characteristics,
including the frequency, volume, velocity, type, and veracity of
the data. When big data is processed and stored, additional
dimensions come into play, such as governance, security, and
policies. Choosing an architecture and building an appropriate
big data solution is challenging because so many factors have to
be considered. This "Big data architecture and patterns" series
presents a structured and pattern-based approach to simplify the
task of defining an overall big data architecture. Because it is
important to assess whether a business scenario is a big data
problem, we include pointers to help determine which business
problems are good candidates for big data solutions.

Big Data=Transactions+Ineractions+Observations

Big data is more real-time in nature than traditional DW
applications. Traditional DW architectures (e.g. Exadata,
Teradata) are not well-suited for big data apps. Shared nothing,
massively parallel processing, scale out architectures are well-
suited for big data apps.

Lambda architecture

The rise of lambda architecture is correlated with the growth
of big data, real-time analytics, and the drive to mitigate the
latencies of map-reduce.[1]Lambda architecture depends on a
data model with an append-only, immutable data source that
serves as a system of record.[2] It is intended for ingesting and
processing time stamped events that are appended to existing
events rather than overwriting them. State is determined from
the natural time-based ordering of the data. Lambda
architecture describes a system consisting of three layers:
batch processing, speed (or real-time) processing, and a
serving layer for responding to queries.[3].The processing
layers ingest from an immutable master copy of the entire
data set.

Batch layer

The batch layer precomputes results using a distributed
processing system that can handle very large quantities of

Copyright © 2017 Swetha, G and Radhika, V., This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Corresponding author: Swetha, G
Department of Computer Science & Engineering, Teegala Krishna
Reddy Engineering College Hyderabad, T.S-500 097, India

Fig-1

Fig-2

International Journal of
Research and Current Development

Available Online at http://www.journalijrcd.com
vol. 2, Issue, 1, pp.23-25, January, 2017

IJRCD

ISSN: XXX-XXXX RESEARCH ARTICLE

PARALLEL COMPUTING OF BIG DATA USING MAPREDUCE
Asst.Prof . Swetha, G1 and Asst.Prof. Radhika, V2Department of Computer Science & Engineering, Teegala Krishna Reddy Engineering CollegeHyderabad, T.S-500 097, India

A R T I C L E I N F O A B S T R A C T
Article History:
Received 18th October, 2016
Received in revised form 19th
November, 2016
Accepted 24th December, 2016
Published online 28th January, 2017

Big data is a term for data sets that are so large or complex that traditional data processing applications
are inadequate. Extracting useful information from dataset measuring in gigabytes and tetra bytes is a
real challenge for data miners. In this paper we discuss and analyze opportunities and challenges for
efficient parallel data processing. Big Data is the next frontier for innovation, competition, and
productivity, and many solutions continue to appear, partly supported by the considerable enthusiasm
around the Map Reduce paradigm for large-scale data analysis. Map Reduce is a programming model
and an associated implementation for processing and generating large data sets with a parallel,
distributed algorithm on a cluster. We review various parallel and distributed programming paradigms,
analyzing how they fit into the Big Data era, and present modern emerging paradigms and
frameworks. With “Big Data” now becoming a reality, more programmers are interested in building
programs on the parallel model — and they often find SQL an unfamiliar and restrictive way to
wrangle data and write code. The biggest game-changer to come along is Map Reduce, the parallel
programming framework that has gained prominence thanks to its use at web search companies.

Keywords:

Introduction, Lambda Architecture,
Parallel Computing, MapReduce

INTRODUCTION
Big data can be stored, acquired, processed, and analyzed in
many ways. Every big data source has different characteristics,
including the frequency, volume, velocity, type, and veracity of
the data. When big data is processed and stored, additional
dimensions come into play, such as governance, security, and
policies. Choosing an architecture and building an appropriate
big data solution is challenging because so many factors have to
be considered. This "Big data architecture and patterns" series
presents a structured and pattern-based approach to simplify the
task of defining an overall big data architecture. Because it is
important to assess whether a business scenario is a big data
problem, we include pointers to help determine which business
problems are good candidates for big data solutions.

Big Data=Transactions+Ineractions+Observations

Big data is more real-time in nature than traditional DW
applications. Traditional DW architectures (e.g. Exadata,
Teradata) are not well-suited for big data apps. Shared nothing,
massively parallel processing, scale out architectures are well-
suited for big data apps.

Lambda architecture

The rise of lambda architecture is correlated with the growth
of big data, real-time analytics, and the drive to mitigate the
latencies of map-reduce.[1]Lambda architecture depends on a
data model with an append-only, immutable data source that
serves as a system of record.[2] It is intended for ingesting and
processing time stamped events that are appended to existing
events rather than overwriting them. State is determined from
the natural time-based ordering of the data. Lambda
architecture describes a system consisting of three layers:
batch processing, speed (or real-time) processing, and a
serving layer for responding to queries.[3].The processing
layers ingest from an immutable master copy of the entire
data set.

Batch layer

The batch layer precomputes results using a distributed
processing system that can handle very large quantities of

Copyright © 2017 Swetha, G and Radhika, V., This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Corresponding author: Swetha, G
Department of Computer Science & Engineering, Teegala Krishna
Reddy Engineering College Hyderabad, T.S-500 097, India

Fig-1

Fig-2

International Journal of
Research and Current Development

Available Online at http://www.journalijrcd.com
vol. 2, Issue, 1, pp.23-25, January, 2017

IJRCD

Swetha, G and Radhika, V., IJRCD, 2017; Vol. 2(1): 23-25. ISSN: XXX-XXXX

International journal of research and current development 24

data. The batch layer aims at perfect accuracy by being able to
process all available data when generating views. This means it
can fix any errors by recomputing based on the complete data
set, then updating existing views. Output is typically stored in a
read-only database, with updates completely replacing existing
precomputed views.[3]

Speed layer

Diagram showing the flow of data through the processing and
serving layers of lambda architecture.

The speed layer processes data streams in real time and without
the requirements of fix-ups or completeness. This layer
sacrifices throughput as it aims to minimize latency by providing
real-time views into the most recent data. Essentially, the speed
layer is responsible for filling the "gap" caused by the batch
layer's lag in providing views based on the most recent data.
This layer's views may not be as accurate or complete as the
ones eventually produced by the batch layer, but they are
available almost immediately after data is received, and can be
replaced when the batch layer's views for the same data become
available.[3] Stream-processing technologies typically used in
this layer include Apache Storm, SQLstream and Apache Spark.
Output is typically stored on fast NoSQL databases.[5]

Serving layer

Diagram showing a lambda architecture with a Druid data store.
Output from the batch and speed layers are stored in the serving
layer, which responds to ad-hoc queries by returning
precomputed views or building views from the processed data.
Examples of technologies used in the serving layer include
Druid, which provides a single cluster to handle output from
both layers.[7] Dedicated stores used in the serving layer include
Apache Cassandra or Apache HBase for speed-layer output, and
Elephant DB or Cloudera Impala for batch-layer output.[2]

Parallel Computing

Most high performance platforms are created by connecting
multiple nodes together via a variety of network topologies.
Specialty appliances may differ in the specifics of the
configurations, as do software appliances. However, the general

architecture distinguishes the management of computing
resources (and corresponding allocation of tasks) and the
management of the data across the network of storage nodes,
as is seen in the figure below:

Typical organization of resources in a big data platform.
In this configuration, a master job manager oversees the pool
of processing nodes, assigns tasks, and monitors the activity.
At the same time, a storage manager oversees the data storage
pool and distributes datasets across the collection of storage
resources. While there is no a priori requirement that there be
any colocation of data and processing tasks, it is beneficial
from a performance perspective to ensure that the threads
process data that is stored in a way that is directly local to the
node upon which the thread executes, or is stored on a node
that is close to it. Reducing the costs of data access latency
through co-location improves performance speed.

MapReduce

The MapReduce algorithm contains two important tasks,
namely Map and Reduce. Map takes a set of data and converts
it into another set of data, where individual elements are
broken down into tuples (key/value pairs). Secondly, reduce
task, which takes the output from a map as an input and
combines those data tuples into a smaller set of tuples. As the
sequence of the name MapReduce implies, the reduce task is
always performed after the map job.

The Algorithm

 Generally MapReduce paradigm is based on sending the
computer to where the data resides!

 MapReduce program executes in three stages, namely
map stage, shuffle stage, and reduce stage.
o Map stage: The map or mapper’s job is to process

the input data. Generally the input data is in the
form of file or directory and is stored in the Hadoop
file system (HDFS). The input file is passed to the
mapper function line by line. The mapper processes
the data and creates several small chunks of data.

o Reduce stage: This stage is the combination of the
Shuffle stage and the Reduce stage. The Reducer’s
job is to process the data that comes from the
mapper. After processing, it produces a new set of
output, which will be stored in the HDFS.

Fig-3

Fig-4

Fig-5

Swetha, G and Radhika, V., IJRCD, 2017; Vol. 2(1): 23-25. ISSN: XXX-XXXX

International journal of research and current development 24

data. The batch layer aims at perfect accuracy by being able to
process all available data when generating views. This means it
can fix any errors by recomputing based on the complete data
set, then updating existing views. Output is typically stored in a
read-only database, with updates completely replacing existing
precomputed views.[3]

Speed layer

Diagram showing the flow of data through the processing and
serving layers of lambda architecture.

The speed layer processes data streams in real time and without
the requirements of fix-ups or completeness. This layer
sacrifices throughput as it aims to minimize latency by providing
real-time views into the most recent data. Essentially, the speed
layer is responsible for filling the "gap" caused by the batch
layer's lag in providing views based on the most recent data.
This layer's views may not be as accurate or complete as the
ones eventually produced by the batch layer, but they are
available almost immediately after data is received, and can be
replaced when the batch layer's views for the same data become
available.[3] Stream-processing technologies typically used in
this layer include Apache Storm, SQLstream and Apache Spark.
Output is typically stored on fast NoSQL databases.[5]

Serving layer

Diagram showing a lambda architecture with a Druid data store.
Output from the batch and speed layers are stored in the serving
layer, which responds to ad-hoc queries by returning
precomputed views or building views from the processed data.
Examples of technologies used in the serving layer include
Druid, which provides a single cluster to handle output from
both layers.[7] Dedicated stores used in the serving layer include
Apache Cassandra or Apache HBase for speed-layer output, and
Elephant DB or Cloudera Impala for batch-layer output.[2]

Parallel Computing

Most high performance platforms are created by connecting
multiple nodes together via a variety of network topologies.
Specialty appliances may differ in the specifics of the
configurations, as do software appliances. However, the general

architecture distinguishes the management of computing
resources (and corresponding allocation of tasks) and the
management of the data across the network of storage nodes,
as is seen in the figure below:

Typical organization of resources in a big data platform.
In this configuration, a master job manager oversees the pool
of processing nodes, assigns tasks, and monitors the activity.
At the same time, a storage manager oversees the data storage
pool and distributes datasets across the collection of storage
resources. While there is no a priori requirement that there be
any colocation of data and processing tasks, it is beneficial
from a performance perspective to ensure that the threads
process data that is stored in a way that is directly local to the
node upon which the thread executes, or is stored on a node
that is close to it. Reducing the costs of data access latency
through co-location improves performance speed.

MapReduce

The MapReduce algorithm contains two important tasks,
namely Map and Reduce. Map takes a set of data and converts
it into another set of data, where individual elements are
broken down into tuples (key/value pairs). Secondly, reduce
task, which takes the output from a map as an input and
combines those data tuples into a smaller set of tuples. As the
sequence of the name MapReduce implies, the reduce task is
always performed after the map job.

The Algorithm

 Generally MapReduce paradigm is based on sending the
computer to where the data resides!

 MapReduce program executes in three stages, namely
map stage, shuffle stage, and reduce stage.
o Map stage: The map or mapper’s job is to process

the input data. Generally the input data is in the
form of file or directory and is stored in the Hadoop
file system (HDFS). The input file is passed to the
mapper function line by line. The mapper processes
the data and creates several small chunks of data.

o Reduce stage: This stage is the combination of the
Shuffle stage and the Reduce stage. The Reducer’s
job is to process the data that comes from the
mapper. After processing, it produces a new set of
output, which will be stored in the HDFS.

Fig-3

Fig-4

Fig-5

Swetha, G and Radhika, V., IJRCD, 2017; Vol. 2(1): 23-25. ISSN: XXX-XXXX

International journal of research and current development 24

data. The batch layer aims at perfect accuracy by being able to
process all available data when generating views. This means it
can fix any errors by recomputing based on the complete data
set, then updating existing views. Output is typically stored in a
read-only database, with updates completely replacing existing
precomputed views.[3]

Speed layer

Diagram showing the flow of data through the processing and
serving layers of lambda architecture.

The speed layer processes data streams in real time and without
the requirements of fix-ups or completeness. This layer
sacrifices throughput as it aims to minimize latency by providing
real-time views into the most recent data. Essentially, the speed
layer is responsible for filling the "gap" caused by the batch
layer's lag in providing views based on the most recent data.
This layer's views may not be as accurate or complete as the
ones eventually produced by the batch layer, but they are
available almost immediately after data is received, and can be
replaced when the batch layer's views for the same data become
available.[3] Stream-processing technologies typically used in
this layer include Apache Storm, SQLstream and Apache Spark.
Output is typically stored on fast NoSQL databases.[5]

Serving layer

Diagram showing a lambda architecture with a Druid data store.
Output from the batch and speed layers are stored in the serving
layer, which responds to ad-hoc queries by returning
precomputed views or building views from the processed data.
Examples of technologies used in the serving layer include
Druid, which provides a single cluster to handle output from
both layers.[7] Dedicated stores used in the serving layer include
Apache Cassandra or Apache HBase for speed-layer output, and
Elephant DB or Cloudera Impala for batch-layer output.[2]

Parallel Computing

Most high performance platforms are created by connecting
multiple nodes together via a variety of network topologies.
Specialty appliances may differ in the specifics of the
configurations, as do software appliances. However, the general

architecture distinguishes the management of computing
resources (and corresponding allocation of tasks) and the
management of the data across the network of storage nodes,
as is seen in the figure below:

Typical organization of resources in a big data platform.
In this configuration, a master job manager oversees the pool
of processing nodes, assigns tasks, and monitors the activity.
At the same time, a storage manager oversees the data storage
pool and distributes datasets across the collection of storage
resources. While there is no a priori requirement that there be
any colocation of data and processing tasks, it is beneficial
from a performance perspective to ensure that the threads
process data that is stored in a way that is directly local to the
node upon which the thread executes, or is stored on a node
that is close to it. Reducing the costs of data access latency
through co-location improves performance speed.

MapReduce

The MapReduce algorithm contains two important tasks,
namely Map and Reduce. Map takes a set of data and converts
it into another set of data, where individual elements are
broken down into tuples (key/value pairs). Secondly, reduce
task, which takes the output from a map as an input and
combines those data tuples into a smaller set of tuples. As the
sequence of the name MapReduce implies, the reduce task is
always performed after the map job.

The Algorithm

 Generally MapReduce paradigm is based on sending the
computer to where the data resides!

 MapReduce program executes in three stages, namely
map stage, shuffle stage, and reduce stage.
o Map stage: The map or mapper’s job is to process

the input data. Generally the input data is in the
form of file or directory and is stored in the Hadoop
file system (HDFS). The input file is passed to the
mapper function line by line. The mapper processes
the data and creates several small chunks of data.

o Reduce stage: This stage is the combination of the
Shuffle stage and the Reduce stage. The Reducer’s
job is to process the data that comes from the
mapper. After processing, it produces a new set of
output, which will be stored in the HDFS.

Fig-3

Fig-4

Fig-5

Swetha, G and Radhika, V., IJRCD, 2017; Vol. 2(1): 23-25. ISSN: XXX-XXXX

International journal of research and current development 25

 During a MapReduce job, Hadoop sends the Map and
Reduce tasks to the appropriate servers in the cluster.

 The framework manages all the details of data-passing
such as issuing tasks, verifying task completion, and
copying data around the cluster between the nodes.

 Most of the computing takes place on nodes with data
on local disks that reduces the network traffic.

 After completion of the given tasks, the cluster collects
and reduces the data to form an appropriate result, and
sends it back to the Hadoop server.

The MapReduce framework operates on <key, value> pairs, that
is, the framework views the input to the job as a set of <key,
value> pairs and produces a set of <key, value> pairs as the
output of the job, conceivably of different types. The key and the
value classes should be in serialized manner by the framework
and hence, need to implement the Writable interface.
Additionally, the key classes have to implement the Writable-
Comparable interface to facilitate sorting by the framework.
Input and Output types of a MapReduce job: (Input) <k1, v1> ->
map -> <k2, v2>-> reduce -> <k3, v3>(Output).

Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

The major advantage of MapReduce is that it is easy to scale
data processing over multiple computing nodes. Under the
MapReduce model, the data processing primitives are called
mappers and reducers. Decomposing a data processing
application into mappers and reducers is sometimes nontrivial.
But, once we write an application in the MapReduce form,
scaling the application to run over hundreds, thousands, or even
tens of thousands of machines in a cluster is merely a
configuration change. This simple scalability is what has
attracted many programmers to use the MapReduce model.

References
1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik,
S.: Aurora: a new model and architecture for data stream
management. VLDB J. Int. J. Very Large Data Bases
12(2), 120–139 (2003)CrossRef

2. Beckhusen, R.: So it begins: Darpa sets out to make
computers that can teach themselves.
http://www.wired.com/dangerroom/2013/03/darpa-
machine-learning-2/all/1 (2013). Accessed 18 Apr 2013

3. Bell, G., Hey, T., Szalay, A.: Beyond the data deluge.
Science 323(5919), 1297–1298 (2009)CrossRef

4. Berkan, R.: Big Data: a blessing and a curse.
http://www.searchenginejournal.com/big-data-
blessing/53528/ (2012). Accessed 15 Apr 2013

5. Cisco: Cisco visual networking index: Global mobile
data traffic forecast update, 2011–2016.
http://www.cisco.com/ (2012). Accessed 16 Apr 2013

6. Cortes, C., Fisher, K., Pregibon, D., Rogers, A.:
Hancock: a language for extracting signatures from
data streams. In: Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 9–17. ACM (2000)

7. Darema, F.: The spmd model: past, present and future.
In: Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pp. 1–1. Springer, Berlin
(2001)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data
processing on large clusters. Commun. ACM 51(1),
107–113 (2008)CrossRef

9. Dorier, M., Antoniu, G., Cappello, F., Snir, M., Orf, L.:
Damaris: how to efficiently leverage multicore
parallelism to achieve scalable, jitter-free i/o. In: 2012
IEEE International Conference on Cluster Computing
(CLUSTER), pp. 155–163. IEEE (2012)

10. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae,
S.H., Qiu, J., Fox, G.: Twister: a runtime for iterative
mapreduce. In: Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, pp. 810–818. ACM (2010)

11. Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for
data intensive scientific analyses. In: IEEE Fourth
International Conference on eScience 2008
(eScience’08), pp. 277–284. IEEE (2008)

12. Fox, G., Bae, S.H., Ekanayake, J., Qiu, X., Yuan, H.:
Parallel data mining from multicore to cloudy grids. In:
High Performance Computing Workshop, vol. 18, pp.
311–340 (2009)

13. Frank, C.: Forbes: Improving Decision Making in the
World of Big Data. http://www.forbes.com/sites/
christopherfrank/2012/03/25/improving-decision-
making-in-the-world-of-big-data/ (2012). Accessed 15
Apr 2013

14. Gainaru, A., Cappello, F., Kramer, W.: Taming of the
shrew: modeling the normal and faulty behaviour of
large-scale hpc systems. In: 2012 IEEE 26th
International Parallel & Distributed Processing
Symposium (IPDPS), pp. 1168–1179. IEEE (2012)

15. Ghemawat, S., Gobioff, H., Leung, S.T.: The google
file system. In: ACM SIGOPS Operating Systems
Review, vol. 37, pp. 29–43. ACM (2003)

Fig-6

